Review of Quantum Mechanics

The basic principle underlying quantum mechanics is that everything is both a wave and a particle (wave-particle duality). That means that if you look for wave behavior (in the right wavelength regime), you will find it. Similarly, if you look for particle-like behavior (in the right units or quanta) you will also find it.

We are familiar with the behavior of macroscopic objects (particles), so a way to bring these seemingly contradictory ideas together is to generate a wave equation that gives us Newtonian mechanics at the macroscopic scale.

Start with classical mechanics with \(\mathbf{p} \) representing momentum and \(\mathbf{r} \) location. The basic laws of motion can be described simply in terms of a Hamiltonian \(H(\mathbf{p}, \mathbf{r}) \):

\[
\frac{d\mathbf{r}}{dt} = \nabla_{\mathbf{p}} H(\mathbf{p}, \mathbf{r}) \quad (1)
\]

\[
\frac{d\mathbf{p}}{dt} = -\nabla_{\mathbf{r}} H(\mathbf{p}, \mathbf{r}) \quad (2)
\]

The classical Hamiltonian is:

\[
H = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}) = \text{KE} + \text{PE} = E \quad (3)
\]

Substituting above, we get:

\[
\frac{d\mathbf{r}}{dt} = \nabla_{\mathbf{p}} H(\mathbf{p}, \mathbf{r}) = \frac{\mathbf{p}}{m} = \mathbf{v} \quad (4)
\]

and

\[
\frac{d\mathbf{p}}{dt} = -\nabla_{\mathbf{r}} H(\mathbf{p}, \mathbf{r}) = -\nabla_{\mathbf{r}} V(\mathbf{r}) = \mathbf{F}, \quad (5)
\]

which are just the definition of momentum and Newton’s second law \(\mathbf{F} = m\mathbf{a} \).
We can transfer these same ideas to quantum mechanics. Consider a simple plane wave:

\[\Psi = A \cdot \exp[i(k \cdot r - \omega t)] \]

(6)

Based on work of Planck, Eistein and de Broglie, for particle as wave (e.g., photon, free electron), \(E = \hbar \omega, \ p = \hbar k \). We can extract this information from a general wave (superposition of plane waves) by using operators. Specifically, the momentum operator is given by \((\hbar / i) \nabla\), and energy is an operator given by \(E = (i\hbar) \partial / \partial t \). We can easily test that these work for the simple plane wave.

If we use these operators in \(H = E \) (or \(H\Psi = E\Psi \)), we get the time-dependent Schrödinger Equation:

\[-\frac{\hbar^2}{2m} \nabla^2 \psi(r) + V(r)\psi(r, t) = i\hbar \frac{\partial \psi(r, t)}{\partial t}.\]

(7)

\[\Psi(r, t) : \text{state function, solution to S's equation} \]

\[|\Psi(r, t)|^2 : \text{probability of finding electron at } r \text{ at time } t \]

\[\hbar = \frac{\hbar}{2\pi} \]

If we assume that \(\Psi(r, t) = \psi(r)\phi(t) \), then we can separate Eq. (7) into

\[i\hbar \frac{\partial \phi(t)}{\partial t} = E\phi(t) \]

(8)

\[-\frac{\hbar^2}{2m} \nabla^2 \psi(r) + V(r)\psi(r, t) = E\psi(r) \]

(9)

This simplification is valid whenever \(E \) is a constant (independent of time). Equation (8) has the simple solution \(\phi(t) = A \cdot \exp(-iEt/\hbar) = A \cdot \exp(-i\omega t) \).

Equation (9) is the Time-independent or Stationary Schrödinger Equation, and knowledge of the potential, \(V \), is required in order to solve.
For simplicity, look at 1D. For \(V = V_0, \ E > V_0(= 0 \text{ for free electron}) \) with

\[
k^2 = (2m/\hbar^2)(E - V_0),
\]

then (1) reduces to:

\[
\frac{\partial^2 \psi}{\partial x^2} + k^2 \psi = 0, \tag{10}
\]

which has solutions of the form:

\[
\psi(r) = A \exp(jkr) + B \exp(-jkr) \tag{11}
\]

This solution is in the form of traveling waves in the positive and negative direction, with constant amplitude everywhere (the electron is equally likely to be anywhere). \(k \) is the wavenumber (the wavevector in 3D, \(k = (k_x, k_y, k_z) \)).

\[
k = \frac{2\pi}{\lambda} \tag{12}
\]

\[
E - V_0 = \text{Kinetic Energy} = \frac{\hbar^2 k^2}{2m} = \frac{p^2}{2m} \tag{13}
\]

\[
p = \hbar k = \text{crystal momentum} \tag{14}
\]