Analyse & Design Circuits to Maximize Power Delivery

Learning goals

- Physical meaning of power
- Compute power delivered to a component
 - Given circuit diagram and component values
 - Compute power (analysis step)
- Design circuits to maximize power delivery to a component
 - Given circuit diagram
 - Determine component values

Physical meaning

- Home electricity bill
 - Bring a bill to class
- Power to run desktop vs. laptop computers
 - Which consumes more?
 - Find how much power a Pentium CPU needs
- Maximizing power: why?
 - Reduce power waste
 - Get better radio reception (more power received)
 - Make speakers sound louder
 - Find speaker input impedance as an exercise

Procedure to compute power

- Compute using general definitions
 - Valid in ALL cases
 - Instantaneous power \(p(t) \)
 - Function of time
 - \(p(t) = v(t) i(t) \)
 - Average power \(P_{\text{av}} \)
 - Average value of \(p(t) \) over a time interval \(T \) (e.g. average power use at home in one month)
 - NOT a function of time
 - \(P_{\text{av}} = \frac{1}{T} \int_0^T p(t) \, dt \)

In-class exercises

- Compute average power in components with sinusoidal signals
 - Given \(V(t) = V_m \cos(\omega t + \phi) \)
 - Average power consumed by \(R \)
 - Average power consumed by \(L \)
 - Average power consumed by \(C \)
- Observations
 - Why \(P_{\text{av}}=0 \) for \(L \) and \(C \)?
 - Faster way to compute average power for specific case of sinusoidal signals?

\(P_{\text{av}} \) consumed by \(R \)

- DC case
 - \(P = VI = V^2/R = RI^2 \)
- Sinusoidal case from previous calculation
 - \(P_{\text{av}} = V_m I_m/2 = V_m^2/(2R) = R(I_m^2/2) \)
- One ‘general formula’ for both cases?
 - Use a Root-Mean-Square value for \(v(t) \) and \(i(t) \)
 - RMS definition for any signal \(v(t) \)
 - \(V_{\text{RMS}} = \frac{1}{T} \int_0^T v^2(t) \, dt \)
In-class exercises

- Compute V_{RMS} for
 - $V(t) = V_m \cos (\omega t + \phi)$
- Sinusoidal case with amplitude V_m and I_m

\[V_{RMS} = \frac{V_m}{\sqrt{2}} \]
\[I_{RMS} = \frac{I_m}{\sqrt{2}} \]

Revisit P_{av} by R

- DC case
 - $P = VI = V^2/R = RI^2$
- Sinusoidal case from previous calculation
 - $P_{av} = V_m I_m/2 = V_m^2/2R = R(I_m^2/2)$
- Use RMS value
 - $P_{av} = V_m I_m/2 = V_m^2/(2R) = (V_{RMS}^2)/R = R I_{RMS}^2$
- Same ‘general form’ using DC value and RMS value

Superposition note

- Apply 2 or more sources to a component
 - For each source, calculate $v(t)$ and $i(t)$ for the component
 - Sum all $v(t)$ to get total $V(t)$ across the component
 - Sum all $i(t)$ to get total $I(t)$ into the component
 - $P(t) = V(t) I(t)$. Calculate P_{av} from $P(t)$.
 - Do NOT calculate $p(t)$ for each source and sum to get $P(t)$!!

Maximum power transfer

- Circuit with sinusoidal signals
 - Thevenin equivalent: $V_t, Z_t = R_t + jX_t$
 - Load: $Z_L = R_L + jX_L$
 - Design the load Z_t to maximize power delivered to the load
 - $Z_t = Z_t^*$ or $[R_t = R_L, X_t = -X_L]$
 - Calculate maximum power for this case

Design problem

- $R = 800 \, \Omega, L = 1.6H$